Study may answer longstanding questions about Little Ice Age

A new international study may answer contentious questions about the onset and persistence of Earth’s Little Ice Age, a period of widespread cooling that lasted for hundreds of years until the late 19th century. 

The study, led by the University of Colorado Boulder with co-authors at the National Center for Atmospheric Research (NCAR) and other organizations, suggests that an unusual, 50-year-long episode of four massive tropical volcanic eruptions triggered the Little Ice Age between 1275 and 1300 A.D. The persistence of cold summers following the eruptions is best explained by a subsequent expansion of sea ice and a related weakening of Atlantic currents, according to computer simulations conducted for the study.

The study, which used analyses of patterns of dead vegetation, ice and sediment core data, and powerful computer climate models, provides new evidence in a longstanding scientific debate over the onset of the Little Ice Age. Scientists have theorized that the Little Ice Age was caused by decreased summer solar radiation, erupting volcanoes that cooled the planet by ejecting sulfates and other aerosol particles that reflected sunlight back into space, or a combination of the two.

“This is the first time anyone has clearly identified the specific onset of the cold times marking the start of the Little Ice Age,” says lead author Gifford Miller of the University of Colorado Boulder. “We also have provided an understandable climate feedback system that explains how this cold period could be sustained for a long period of time. If the climate system is hit again and again by cold conditions over a relatively short period—in this case, from volcanic eruptions—there appears to be a cumulative cooling effect.”

"Our simulations showed that the volcanic eruptions may have had a profound cooling effect,” says NCAR scientist Bette Otto-Bliesner, a co-author of the study. “The eruptions could have triggered a chain reaction, affecting sea ice and ocean currents in a way that lowered temperatures for centuries."

The study appears this week in Geophysical Research Letters. The research team includes co-authors from the University of Iceland, the University of California Irvine, and the University of Edinburgh in Scotland. The study was funded in part by the National Science Foundation, NCAR’s sponsor, and the Icelandic Science Foundation.

-----Far-flung regions of ice-----

Scientific estimates regarding the onset of the Little Ice Age range from the 13th century to the 16th century, but there is little consensus, Miller says.  Although the cooling temperatures may have affected places as far away as South America and China, they were particularly evident in northern Europe. Advancing glaciers in mountain valleys destroyed towns, and paintings from the period depict people ice-skating on the Thames River in London and canals in the Netherlands, places that were ice-free before and after the Little Ice Age. 

“The dominant way scientists have defined the Little Ice Age is by the expansion of big valley glaciers in the Alps and in Norway,” says Miller, a fellow at CU’s Institute of Arctic and Alpine Research. “But the time in which European glaciers advanced far enough to demolish villages would have been long after the onset of the cold period.”

Miller and his colleagues radiocarbon-dated roughly 150 samples of dead plant material with roots intact, collected from beneath receding margins of ice caps on Baffin Island in the Canadian Arctic.  They found a large cluster of “kill dates” between 1275 and 1300 A.D., indicating the plants had been frozen and engulfed by ice during a relatively sudden event. 

The team saw a second spike in plant kill dates at about 1450 A.D., indicating the quick onset of a second major cooling event. 

To broaden the study, the researchers analyzed sediment cores from a glacial lake linked to the 367-square-mile Langjökull ice cap in the central highlands of Iceland that reaches nearly a mile high. The annual layers in the cores—which can be reliably dated by using tephra deposits from known historic volcanic eruptions on Iceland going back more than 1,000 years—suddenly became thicker in the late 13th century and again in the 15th century due to increased erosion caused by the expansion of the ice cap as the climate cooled.

“That showed us the signal we got from Baffin Island was not just a local signal, it was a North Atlantic signal,” Miller says.  “This gave us a great deal more confidence that there was a major perturbation to the Northern Hemisphere climate near the end of the 13th century.”

The team used the Community Climate System Model, which was developed by scientists at NCAR and the Department of Energy with colleagues at other organizations, to test the effects of volcanic cooling on Arctic sea ice extent and mass. The model, which simulated various sea ice conditions from about 1150 to 1700 A.D., showed several large, closely spaced eruptions could have cooled the Northern Hemisphere enough to trigger the expansion of Arctic sea ice.

The model showed that sustained cooling from volcanoes would have sent some of the expanding Arctic sea ice down along the eastern coast of Greenland until it eventually melted in the North Atlantic.  Since sea ice contains almost no salt, when it melted the surface water became less dense, preventing it from mixing with deeper North Atlantic water. This weakened heat transport back to the Arctic and created a self-sustaining feedback on the sea ice long after the effects of the volcanic aerosols subsided, according to the simulations.

The researchers set solar radiation at a constant level in the climate models. The supercomputer simulations indicated that the Little Ice Age likely would have occurred without decreased summer solar radiation at the time, Miller says.Gifford Miller collects vegetation samples on Baffin Island. (Photo courtesy University of Colorado Boulder.)